
987 

Regular Contributed Papers 

Acta Crysr (1988). A44, 987-998 

Propagating Local Positional Order in Tetrahedrally Bonded Systems 

BY YASUSH! lSHlI* 

Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA 

(Received 16 December 1987; accepted 6 April 1988) 

Abstract 

Several possible aperiodic tetrahedrally bonded 
structures are investigated based on the concept of 
propagating local positional order. Local positional 
order (LPO) in a tetrahedrally bonded system is par- 
ametrized by the angle of relative rotation of tetrahe- 
dral coordinations of adjacent atoms, 0. By choosing 
0 appropriately we can have LPO which is incompat- 
ible with periodic translational order. Propagation of 
LPO is described here by rolling polytope {5, 3, 3} 
and polytope 240. Defects of LPO in a system filled 
with atoms by a rolling polytope are discussed. As 
an alternative model, a three-dimensional Penrose 
tiling with tetrahedral decoration is investigated. It 
is shown that the proposed decoration necessarily 
introduces atoms with a broken bond. 

1. Introduction 
The structure of metallic glass is well simulated by 
the dense random packing (DRP) model (Finney, 
1970). [For the relevance to metallic glasses, see 
Cargill (1975).] In the DRP model, four particles 
form a tetrahedral cluster to minimize the local energy 
density. When 20 tetrahedra meet at one vertex to 
form a 13-atom cluster, gaps appear between surface 
atoms because an edge of an icosahedron is about 
5% longer than its center-to-vertex distance. This 
means that the local energy density cannot be minim- 
ized in a 13-atom cluster as much as in a four-atom 
tetrahedrai cluster because a surface atom cannot sit 
in a site which minimizes pairwise energies simul- 
taneously with its all neighbors. In this sense, there 
is structural frustration in DRP structure and icosahe- 
dral arrangements (Nelson, 1983a). However, if the 
clusters are small enough, icosahedral clusters have 
a significantly lower energy than 'crystalline' clusters 
such as clusters with a local atomic arrangement in 
face-centered cubic (f.c.c.) or hexagonal close-packed 
(h.c.p.) structures (Frank, 1952). Steinhardt, Nelson 
& Ronchetti (1983) have found in their molecular 
dynamics simulation that icosahedral bond orienta- 
tional order can persist over distances of order at 
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least three to four particle spacings in supercooled 
liquids. 

Recently important progress has been made in 
describing local icosahedral order and its frustration. 
An icosahedral arrangement of points nicely fits on 
the surface of a four-dimensional sphere S 3 (Coxeter, 
1983; KI6man & Sadoc, 1979). Because the frustration 
is eliminated by increasing the curvature of a space 
continuously, one expects that the frustration is par- 
ametrized by the curvature of a manifold which yields 
no frustration. Nelson (1983a) suggested that the 
local orientation of an icosahedron, !, propagates so 
as to satisfy the condition of parallel transport 

t~i lj -- F~i lk = 0, (1.1) 

where FJk~ is the connection coefficient for the curved 
manifold without frustration. When an icosahedron 
is parallel transported along a closed path, its orienta- 
tion is rotated as Al j = ~FJkil k dx ~, which, in general, 
does not vanish. To maintain the icosahedral order, 
this rotation should be one of the symmetry 
operations of an icosahedron. Therefore frustration 
induces defects of the icosahedral order. Sethna 
(1985) proposed a more general picture of parallel 
transport, in which the propagation of icosahedral 
order is described as the rolling of polytope {3, 3, 5} 
(Coxeter, 1983; Kl6man & Sadoc, 1979), in which 
120 particles are placed on S 3 so that every particle 
has complete icosahedral coordination. Nelson & 
Widom (1984) developed this point of view more 
thoroughly. Sachdev & Nelson (1985) have calculated 
the density correlation function of a system with 
propagating icosahedral order based on Nelson & 
Widom's (1984) model and obtained a good agree- 
ment with experimental results for metallic glasses. 

The propagating icosahedral positional order is 
realized in Frank-Kasper  phases of transition-metal 
alloys. Frank & Kasper (1958, 1959) pointed out that 
structures of some transition-metal alloys can be 
understood as a packing of spheres and that an 
icosahedral atomic arrangement is prevalent in their 
structures. Nelson (1983a) has shown that the Frank- 
Kasper phases are regarded as ordered networks of 
defect lines of the icosahedral orientational order, i.e. 
disclinations. Widom (1987) has demonstrated that 
the Mg32(A1, Zn)49 structure is obtained by rolling 
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polytope {3, 3, 5} and then a disclinadon is introduced 
in a natural way through the rolling polytope.* 

The discovery of quasicrystals (Shechtman, Blech, 
Gratias & Cahn, 1984; Henley 1987), which are alloys 
exhibiting sharp diffraction patterns with icosahedral 
symmetry, has provided us with further insight into 
aperiodic structures. The long-range icosahedral 
orientational order can be achieved by making trans- 
lational order quasiperiodic rather than periodic 
(Levine & Steinhardt, 1984). Here it is considered 
that the local positional order propagates in a coher- 
ent fashion through a long-range positional correla- 
tion in a higher-dimensional space. Although the 
relationship between quasicrystalline order and 
frustration in the icosahedral order is clearly complex, 
at least some of the quasicrystals can be viewed as 
ordered networks of disclination lines (Henley & 
Elser, 1986). 

We have seen so far that the propagation of the 
local positional order (LPO) with a frustration tends 
to make a system aperiodic. In metallic systems, LPO 
is the icosahedral orientational order. In covalent 
systems, on the other hand, an atom has a directional 
bonding, which determines a different kind of LPO. 
In a diamond (zincblende) structure, a tetrahedral 
positional order is extended to infinite volume 
without frustration. However, it should be noticed 
that there is some restriction in a diamond structure. 
That is, the rotation of tetrahedra along their common 
axis is restricted to be 60 ° . Actually, by allowing this 
angle to take a different value, we get other crystalline 
structures such as a wurtzite one (Wells, 1977) and 
also non-crystalline ones (Polk, 1971; Connel & Tem- 
kin, 1974). Therefore we consider that the propaga- 
tion of LPO plays an important role in structures of 
covalent substances as well. It is our purpose to 
investigate several possibilities of aperiodic covalent 
(tetrahedrally bonded) structures based on the con- 
cept of propagating local positional order (Mosseri, 
DiVicenzo, Sadoc & Brodsky, 1985). 

To find LPO in a tetrahedrally bonded network, 
the orientation of tetrahedral bonds of adjoining 
atoms is an important parameter. The configuration 
of two atoms connected by a tetrahedral bond is 
parametrized by an angle of the relative rotation of 
tetrahedral coordinations, 0. The configuration corre- 
sponding to 0 = 60 ° is called staggered and 0 = 0 ° 
eclipsed (Wells, 1977). If all four tetrahedral bonds 
connected to a central atom are staggered, 12 atoms 
in a second coordination shell form a local atomic 

* In Laves phases and Mg~2(AI, Zn)4 9 structures, all the 
icosahedral sites are accessible by a rolling polytope in the direction 
of a fivefold axis. Therefore the structure is described completely 
by the rolling polytope model. In the other Frank-Kasper phases, 
however, structures cann6t be obtained only from a rolling poly- 
tope. For example, in the /~ phase, we have a layer which is 
obtained by a rolling polytope but the stacking of layers is not 
determined by rolling. 

arrangement in f.c.c, structure. If one bond is eclipsed 
and the others are staggered, 12 atoms form an 
arrangement in h.c.p, structure (Fig. 1). Therefore the 
choice of 0 determines LPO. It should also be noticed 
that, if we allow only eclipsed bonds, we have a planar 
configuration. Since the bond angle of a tetrahedral 
coordination, cos -~ ( -1 /3 ) -~  109.4 °, is very close to 
the internal angle of a regular pentagon, 108 °, the 
planar configuration leads to five-membered rings 
with only slight distortions; these rings are incompat- 
ible with a long-range translational order, however. 
Therefore the choice of 0 also enables us to have 
LPO including a five-membered ring. 

Quantum-mechanical calculations of chemical 
bonds give the energetic preference of an orientation 
of tetrahedral bonds of adjoining atoms (Pauling, 
1960). However, it is interesting to note that the 
structural energy of a tetrahedrally bonded system is 
usually analyzed by using two- and three-body 
classical interatomic potentials, which are associated 
with bond-length and bond-angle variations, respec- 
tively (Keating, 1966; Biswas & Hamman, 1985). As 
the structural energy difference associated with 0 is 
expressed in terms of a negligible four-body inter- 
atomic potential, it is expected that we are free from 
strong restrictions about 0 in modeling LPO. 

In § 2, we investigate the propagating LPO for 
0 = 0 °. As mentioned above, a planar five-membered 
ring is a basic unit when only an eclipsed bond is 
allowed. Then, as a fundamental cluster, we have a 
dodecahedral cage, which consists of 20 atoms and 
12 five-membered rings. The propagation of LPO 
represented by a dodecahedral cage will be given by 
a rolling of polytope {5, 3, 3} which is dual to polytope 
{3, 3, 5}. Defects in this model will be discussed. In 
§ 3 we study a different sort of icosahedral positional 
order with a covalent bonding by choosing 0 = 38 °. 
The propagation of this order is given by a rolling of 
polytope 240, which is decorated polytope {3, 3, 5} 
(Sadoc & Mosseri, 1982). Since polytope 240 has a 
lower symmetry than polytope {5, 3, 3}, defects which 
differ from the usual disclinations are expected. In 
Penrose tilings, tetravalent icosahedral orientational 
order propagates in a different way from a rolling 
polytope. In § 4 we try to make a quasicrystal, with 
covalent bonding by arranging decorated tiles in a 
way to give Penrose tiling. It turns out that decoration 

f cc  h c p  icos 

Fig. 1. Local atomic arrangements generated with tetrahedral 
atoms. 
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of tiles necessarily generates decoration of vertices 
inconsistent with a covalent bonding. 

2. Rolling polytope {5, 3, 3} 

When only eclipsed bonds are allowed, a planar five- 
membered ring is a basic structural unit. Extending 
an eclipsed configuration further, we have a 
dodecahedral cage, which consists of 20 atoms with 
approximately tetrahedral coordination and 12 five- 
membered rings. A dodecahedral atomic arrangement 
is of course incompatible with translational order in 
a fiat space but fits nicely on S 3. So a template of 
LPO in this case is provided by polytope {5, 3, 3} 
(Sadoc & Mosseri, 1982). 

Polytope {3,3,5} can be triangulated into an 
assembly of 600 tetrahedra. Suppose that we place a 
point at the center of each tetrahedron and connect 
the points in tetrahedra sharing a face with each other. 
Then we have a new object which consists of 600 
vertices with a tetrahedral bonding. This is polytope 
{5, 3, 3}. As is clear from the above construction, 
polytope {5, 3, 3} and polytope {3, 3, 5} are dual to 
each other and related in a similar way to the relation 
between Voronoi and Dirichlet constructions of 
networks (Collins, 1972). The symmetry of polytope 
{5, 3, 3} is the same as that of polytope {3, 3, 5}, which 
is Y 'x  Y ' /Z2  where Y' is a lift of icosahedral point 
group Y into SU(2) and Z2 is the two-element group 
(Nelson & Widom, 1984). 

Propagation of LPO is given by rolling the polytope 
as follows: (1) Place polytope {5, 3, 3} so that S 3 has 
a contact with a flat physical space R 3 at the center 
of a dodecahedral cage. (2) Project the atomic 
arrangement near a tangential point onto a flat space 
R 3. (3) Roll polytope along a straight line, which is 
a trace of a geodesic line between centers of neighbor- 
ing dodecahedral cages on S 3. (4) Repeat procedures 
(2) and (3) to fill a flat space with atoms. Because 
the centers of dodecahedral cages in polytope {5, 3, 3} 
are at the positions of vertices in polytope {3, 3, 5}, 
filling space with atoms by rolling polytope {5, 3, 3} 
is quite similar to that with polytope {3, 3, 5} demon- 
strated by Widom (1987). 

To be more precise let us consider rolling a polytope 
in the direction of one of the fivefold axes, ev. Suppose 
that a north pole of the polytope touches R 3 at r. By 
projecting an atomic arrangement around the north 
pole, we have a dodecahedral cage at r. Then by 
rolling a distance d5 = R x rr/5 where R is a radius 
of S 3, one of the centers of the dodecahedral cages 
neighboring the north pole of the polytope touches 
R 3 at the point r +dsev. Projecting an atomic arrange- 
ment around the tangential point, we have another 
dodecahedral cage at r +  dseo, which is rotated by zr/5 
and shares a five-membered ring with that at r. Since 
the rotation by 7r/5 is not a symmetry operation of 
a dodecahedron, another rolling by d5 in the same 

direction is required to maintain the dodecahedral 
positional order. Then we have another dodecahedral 
cage at r+2dseo, which has the same orientation as 
that at r (more exactly, rotated by 2zr/5) (Fig. 2). 

According to homotopy theory (Mermin, 1979), 
the algebra of defects of the dodecahedral order is 
given by Y ' x  Y' (Nelson & Widom, 1984). That is, 
the order parameter is transformed as a result of going 
along a loop encircling a defect as expressed in terms 
of a rotation of S 3 as 

(l, r)" ~ = lar -~, (2.1) 

where l, r e  Y' (Appendix A). Since 

(l, r)" t~ = (r, r) ' (r-~l ,  "l)'a, (2.2) 

a defect is generally a combination of a net rotation 
and a screw transformation. If we confine our dis- 
cussion to a rotational defect, i.e. disclination, the 
algebra of defects is simply given by (Nelson, 1983a) 

r r , [SO(3) /Y]  = Y' (2.3) 

Then a disclination is characterized by a rotation 
angle and a rotation axis of a dodecahedral symmetry 
operation (see Appendix B). In fact, as a result of 
rolling along a rhombic plaquette (edge length = 2d5) 
spanned by two of the vertex vectors of an icosahe- 
dron, a dodecahedral cage rotates by 2~r/5 around 
one of the fivefold axes. This defect is called a -72  ° 
disclination, the minus sign indicating that the defect 
is obtained by adding a wedge of material. As is clear 
from Fig. 3, the structure of a core of this defect is a 
planar six-membered ring through which a disclina- 
tion line threads. We can imagine a disclination of a 
topological charge +72 ° which threads through four- 
membered rings. However, if we try to make a ring 
only with eclipsed confgurat ions by keeping bond 

Fig. 2. Chain of dodecahedral cages obtained by successively 
rolling polytope {5, 3, 3} along a fivefold axis. 

Fig. 3. Core structure of -72 ° disclination obtained by rolling 
polytope {5, 3, 3} along a rhombic plaquette spanned by two of 
the vertex vectors of an icosahedron. 
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angles strictly cos- '  ( - 1 / 3 ) ,  a gap opens for a five- 
membered  ring with a deficit angle = 7.356 °. Therefore 
there is a tendency that s ix-membered rings are more 
prevalent than four-membered  ones. 

The rolling polytope {5, 3, 3} model gives porous 
structures because a dodecahedra l  cage has a large 
hole inside. Note that the diameter  of  a dodecahedron  
is 3' /2"r  "- 2.80 for a vertex-vertex distance o r  r 3 / ( ' r 2 +  
1)~/2=2.23 for a face-face distance where the edge 
length of a dodecahedron  is taken to be unity. ( r  is 
the golden mean.)  In fact, the propagating dodecahe-  
dral posit ional  order described by the rolling polytope 
{5, 3,3} is realized in some clathrate compounds ,  
M,,Ty where M and T are an interstitial molecule 
and a tetrahedral  unit, respectively. Frank & Kasper 
(1959) pointed out in their pioneering work that struc- 
tures of some gas hydrates ( T =  H20) are dual to 
F rank-Kaspe r  alloys. There water molecules form a 
dodecahedra l  cage or cages dual to Z I 4 ,  Z15 and 
Z I 6  configurations in a defect core. Furthermore dual 
structures to Laves phase (MxT136) and A15 (M,,T46) 
have been observed in some silica compounds  (T  = 
SiO2) (Shenker et al., 1981) and alkali-metal  silicides 
( T = Si) (Cros, Pouchard & Hagenmuller ,  1970). Here 
it should be noted that an interstitial molecule plays 
a crucial role in stabilizing these structures. Recently 
Mackay (1985) proposed a decoration of Penrose tiles 
based on a dodecahedra l  cage. To stabilize this 
hypothetical  quasicrystal ,  an interstitial molecule will 
be very important .  

t~n= Ua exp (it~xTr/4) 
The d iamond  structure is made only from staggered 
(0 = 60 °) bonds  whereas a system with propagat ing 
dodecahedra l  posit ional order is made only from 
eclipsed (0 = 0 °) bonds.  The wurtzite structure is a 
mixture of  staggered and eclipsed bonds with a bulk 
ratio 3:1. In this section we explore the possibil i ty 
of LPO with an intermediate value of 0. 

Let us consider  a configuration of 17 atoms, in 
which one atom is connected with four atoms, each 
of which has three other neighl~oring atoms, by 
tetrahedral bonds  characterized by 0. Then the coor- 
dinates of  the 12 atoms in the outermost coordinat ion 
shell are given by 

r =  (4/3x/3)( + [ 1 + cos 0],+[ 1 - c o s  (0 + rr/3)],  

+[ 1 - c o s  (0 - rr/3)]),  

= (4 /3~/3)( - [  1 + cos 0], - [  1 - c o s  (0 + 7r/3)], 

+[ 1 -cos  ( 0 -  ~/3)]), 

= (4/3~/3)( - [  1 + cos 0], +[ 1 - c o s  (0 + rr/3)],  

- [1  - cos ( 0 -  rr/3)]),  

= (4/3x/3)(+[ 1 + cos 0], - [  1 - c o s  ( 0 + rr/3)],  

- [1  - cos (O- ' r r /3 ) ] ) ,  (3.1) 

and their even (cyclic) permutat ions where the length 
of a tetrahedral  bond is taken to be unity and the 
(1, 1, 1), ( 1 , - 1 , - 1 )  ( - 1 ,  1 , - 1 )  and ( - 1 , - 1 ,  1)direc- 
tions are chosen to be threefold axes of  tetrahedral  
coordination.  We can assume here that 0 varies in 
the range - r r / 3  < 0 -< rr/3 because the location of 12 
atoms is invariant  under  a change of 0-~ 0 + 2 z r / 3 .  
Furthermore a change of  sign of 0 gives the coordin- 
ates obtained by odd permutat ion of the original one. 
Therefore a change of sign of 0 is associated with 
chirality of  LPO. 

The interatomic distance between atoms in the 
outermost shell is shown in Fig. 4 as a funct ion of 0. 
Note that we have at about 0 = 38 ° a configuration 
very similar  to that in an icosahedron,  five nearest- 
neighbor,  five second-neighbor  and one third- 
neighbor atoms at distances of 2asin(O/2)= 
2a x0.525,  2a cos ( 0 / 2 ) " 2 a  x 0.850 and 2a, respec- 
tively, where cos 0 = l /x /5  and the center-to-vertex 
distance of  an icosahedron a = 1.71 in the present 
case. Actually it is possible to decorate a 13-atom 
icosahedral  configuration with four atoms connected 
to a centered atom by approximate  tetrahedral  bonds.  
In this configuration, we find 0 to be cos- '  (5/8) ~/2= 
37.76 ° . 

A template of this local atomic arrangement  is 
provided by polytope 240 (Sadoc & Mosseri,  1982) 
which is obtained from polytope {3, 3, 5} in a similar  
way to the construction of  the d iamond  structure from 
a f.c.c, lattice; the d i amond  structure consists of  two 
f.c.c, sublattices, one of  which is obtained by transla- 
tion of the other. Coordinates  of  a point in the B 
sublattice are given by 

(3.2) 

. . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  

3. Rolling polytope 240 

t 

o , , , I  . . . .  I . . . .  I . . . .  1 . . . .  I 

0 1 0  2 0  3 0  4 0  5 0  

o 

Fig. 4. Interatomic distances in a second coordination shell of a 
17-atom cluster made from tetrahedral bonds characterized by 
0. Thick curves should be regarded as indicating that two atoms 
are located at the same distance. The arrow indicates a position 
giving an approximate icosahedral configuration. 
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for polytope 240 with right chirality and 

~ = exp ( i~xTr/4)t~3 (3.3) 

for that with left chirality, where ~A is a quaternion 
representation of the coordinates of the vertex in 
polytope {3, 3, 5} (Mosseri et al., 1985). Here right 
and left chirality correspond to positive and negative 
values of 0, respectively. 

The symmetry group of polytope 240 with right 
chirality is expressed as Y 'x  T'/Z2 (Mosseri et al., 
1985) if two sublattices are distinguishable.* Here T' 
is a lift of the tetrahedral point group into SU(2) 
(Appendix B). This can be shown as follows. Con- 
sider a transformation of a point in polytope 240, t% 
given by (/, r):ff where l ~ Y' and r ~ T'. Since a set 
of vertices of polytope {3, 3, 5} is isomorphic to Y', 
we have a relation 

ffc r ' +  r '  exp (itTxTr/4). (3.4) 

If ~ is an element of Y', (/, r): a is also an element 
of Y' because T' is a subgroup of Y'. If ~ is an 
element of Y' exp (it~xTr/4), then 

(I, r): ~ r '  exp(i~xTr/4)T'. (3.5) 

Since 

exp(id'xTr/4)T'= T' exp ( i~7r /4) ,  (3.6) 

(l, r)'t~ is an element of Y' exp ( i~7r/4) .  Therefore 
(/, r):t~ (l ~ Y' and r ¢ T') is a symmetry operation of 
polytope 240 with right chirality. The symmetry group 
of polytope 240 with left chirality is given by T ' x  
r' lz2. 

By rolling polytope 240, we try to fill a space with 
tetrahedrally bonded atoms in an icosahedral atomic 
arrangement. To maintain the icosahedral order, it is 
required to roll the polytope along a geodesic line 
joining two vertices in one sublattice, which is poly- 
tope {3, 3, 5}. A rotation of S 3 induced by the rolling 
along a geodesic line joining vertices on polytope 
{3, 3, 5} is given by (/,/-1):t~ where 12~ Y'. Since 

( / , / - i ) :~  = (1-1, l-,):(l 2, 1):t~, (3.7) 

and 

(/2, ] ) : ~ e  y ,+ y, exp(id'xTr/4), (3.8) 

a rotation of a local atomic arrangement projected 
onto a real space R 3 induced by rolling polytope 240 
is described as (/,/):t~ where l E e  Y'. By successive 
rolling in the same direction, a local atomic arrange- 
ment projected onto a real space g 3 rotates as 
(12,/2):~. This rotation is a symmetry operation of 
polytope {3, 3, 5} but not in general that of polytope 
240. In other words, the icosahedral orientation order 
is maintained by the successive rolling in the same 

* If two sublattices are indistinguishable, the symmetry group 
is Y 'x  O ' / Z  2 where a lift o f the  octahedral  point group into SU(2), 
0', is given by O'= T'+ T' exp (i~x~r/4) (Mosseri et al., 1985). 

direction but the orientational order of tetrahedral 
decoration cannot be conserved generally. 

The algebra of defects of the local positional order 
described by a template of polytope 240 is given by 
Y' × T'. Hereafter we consider polytope 240 with right 
chirality. In this case we should regard l~ Y' and 
r ~ T' in (2.2). Therefore the algebra of a rotational 
defect is given by 

7r~[SO(3)/T] = T', (3.9) 

whereas a screw defect is classified by Y'. Funda- 
mental rotational defects in this case are ±27r/3 discli- 
nations, which are characterized by a 2Tr/3 rotation 
of the icosahedral atomic arrangement with tetrahe- 
dral decoration as a result of moving along a loop 
encircling a disclination line. Since 27r/3 rotation of 
an icosahedron is generated by a combination of 27r/5 
rotations, ±27r/3 disclinations can be regarded as 
consisting of several defects associated with 27r/5 
rotations of an icosahedral framework as well as a 
defect of tetrahedral decoration. 

In order to understand typical core structures of a 
defect of the orientational order with additional 
decoration, let us consider a two-dimensional system, 
which is easy to visualize. A two-dimensional (2D) 
analog to the icosahedral order in a three-dimensional 
(3D) flat space is provided by the hexagonal orienta- 
tional order in a 2D negatively curved space (Nelson, 
1983a; Rubinstein & Nelson, 1983). In the 3D case, 
four of 20 tetrahedra meeting at one vertex are decor- 
ated with a tetrahedrally bonded atom. In the 2D 
case, on the other hand, three of six triangles meeting 
at one vertex are decorated with trigonally bonded 
atoms as shown in Fig. 5. 

Rotational defects of the hexagonal order are 
classified as 

" t r l [ S O ( 2 ) / C 6 ]  = {J-nr:/3: rl = i n t e g e r } ,  ( 3 . 1 0 )  

whereas those of the decorated hexagonal order are 
classified as 

7rl[SO(2)/Ca]={ff2,~/3: n=integer},  (3.11) 

where 9-a is a generator of a one-dimensional transla- 
tion by a (Mermin, 1979). Fundamental rotational 

Fig. 5. Two-dimensional  analog to the icosahedral order with 
tetrahedral decoration in three dimensions. 
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defects in a hexagonal ordered state are thus +60 ° 
disclinations, which are characterized by a 7r/3 rota- 
tion of a hexagonal atomic arrangement as a result 
of moving along a loop encircling a defect. Since a 
7r/3 rotation is not a symmetry operation o fa  trigonal 
decoration, a bond orientational order described by 
a decorated template should vanish somewhere along 
a loop encircling a +60 ° disclination. As shown in 
Fig. 6, decoration around a -60  ° disclination results 
in a line of defects on which the bond orientational 
order vanishes, that is, a trigonal atomic arrangement 
fails. The core of this line defect consists of atoms 
with a broken (dangling) bond. 

Broken bonds cost much energy in a covalent sys- 
tem where a chemical bond plays a primary role in 
structural energy. Then it is more plausible that a 
string of atoms with broken bonds is rearranged into 
a string of abnormal rings, which are tings other than 
hexagonal six-membered rings, as shown in Fig. 6. 
Note that the hexagonal bond orientational order 
vanishes along the string by this bond rearrangement. 
In a system in which the hexagonal order is promoted 
by a stronger interaction, on the other hand, the 
rearrangement disturbing the hexagonal order is less 
plausible. A physical example of this case will be 
provided by non-spherical molecules adsorbed on 
graphite, where ordering of molecular orientation 
takes place at lower temperatures (Zhang, Kim & 
Chan 1985). A string of defects of the trigonal decor- 
ation terminates at a disclination. Since the energy 
cost due to the defects is proportional to the length 
of a string, it is energetically favored that a string is 
stretched tightly between +60 ° disclinations. Interac- 
tion between disclinations with topological charges 
of opposite signs is inherently attractive (Nelson & 
Halperin, 1979; Nelson, 1983b). Then strings of 
defects of the trigonal decoration are expected to 
cause additional attractive interaction between a pair 
of disclinations. 

The bond orientational order is maintained along 
a loop encircling a pair of disclinations connected 
by a string of defects, which are abnormal rings, 

Fig. 6. Isolated -60 ° disclination decorated with trigonal atoms. 

because a class multiplication of a homotopy group 
7r,[SO(2)/C6] is given by 

{~r+./3} x {~r-~/3} = {Yo}, 
(3.12) 

{ ~-- zr/3} X { ~"- fr/3} = { "~--2~/3}, 

where {5o} and {J--2,~/3} are elements of 
7r~[SO(2)/C3]. A pair of disclinations with opposite 
signs of topological charges is regarded as a disloca- 
tion (Nelson & Halperin, 1979; Nelson, 1983b). 
Therefore one of the fundamental defects of the 
hexagonal order with trigonal decoration is a disloca- 
tion, which is necessarily associated with a string of 
abnormal rings. In a negatively curved space, 
however, since -60  ° disclinations are more prevalent 
than +60 ° ones, they do not compensate each other 
completely. Then we have a pair of disclinations with 
negative topological charges as another defect (see 
Fig. 7). 

For the icosahedral orientational order in 3D, since 
successive rolling polytopes along 2dsxe~ ~), 4dsx 
<2) c,~ (-e~)), where e~ '~ e v , 2dsx  ( - e v )  and 4dsx = 

(~', 1,0)/(~'2+1) ~/2 and e~:)=(1, O, r ) / ( z 2 + l )  ~/2 are 
unit vectors in the direction of fivefold axes of an 
icosahedron, yield a rotation of the icosahedral 
arrangement by 27r/3 around a (1, 1 , - 1 )  axis, this 
loop encircles a disclination associated with 27r/3 
rotation of the icosahedral arrangement with tetrahe- 
dral decoration. Considering that a rhombic plaquette 

-(~) and 2d5 x e~ ) encircles a - 72  ° spanned by 2d5 x ¢~ 
disclination, we can regard this 2rr/3 rotational defect 

(b) 

(a) 

J 

Fig. 7. Decoration of pairs of fundamental rotational defects of 
the hexagonal order with trigonal atoms. (a) (+,-)  pair and 
(b) ( - , - )  pair. 
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as consisting of a combination of two -72  ° disclina- 
tions. Note that the center of the loop has an icosahe- 
dral coordination but tetrahedral decoration of 
icosahedrally coordinated atoms is not consistent 
with that of the center. Then the center of the loop 
should be occupied by an atom with a broken bond. 
This is analogous to a pair of -60  ° disclinations 
expected in a negatively curved 2D space. 

We have another complicated aspect in 3 D ,  
however. According to homotopy theory (Mermin, 
1979), it is not the individual element but the class 
structure that determines how defects combine. Since 
a homotopy group 7r1[SO(3)/Y] is non-Abelian, 
combination of defects is given in terms of quite 
non-trivial class multiplication (Nelson, 1983a). 
Actually successive rolling of a polytope along 4d5 x 

_(2)x X e~ t) e~ ), 2d5 x (-e(~l)), 4d5 x ( -cv  j and 2d5 yields a 
rotation by 2~'/3 around the (0, "r, 1/'r) axis, which 
is not a symmetry operation of polytope 240. A 2~r/3 
rotation which is a symmetry operation of polytope 
240 is obtained only when we roll polytopes success- 
ively along paths shown in Fig. 8(a). Therefore LPO 
described by polytope 240 propagates successfully 
along the path shown in Fig. 8(b). There LPO at a 
point 1 propagates along a path II passing a point 2. 
Then LPO at a point 2 propagates along a path - I I I  
passing a point 3, which is another starting point of 
rolling. Note that LPO does not propagate success- 
fully along the path shown in Fig. 8(c) because LPO 
propagating from a point 2 to a point 3 along a path 
I is related to that propagated along a path I' by a 
2~r/3 rotation around ( - 1 / z , - 7 ,  0), which is not a 
symmetry operation of polytope 240. Although we 
have not succeeded in obtaining bulk structures 
explicitly, filling a space with tetrahedrally bonded 
atoms by rolling polytope 240 seems fairly difficult 
in the sense that reasonable paths of rolling are very 
restricted. 

(a) 

- V  

3 

1 2 

(b) (c) 

Fig. 8. (a) Paths along which the icosahedral order with tetrahedral 
decoration is maintained through rolling. (b) Possible way of 
propagation of the icosahedral order with tetrahedrai decoration. 
(c) Path along which the icosahedral order with tetrahedral 
decoration does not propagate without frustration. 

4. Decoration of Penrose tiling 

In three-dimensional (3D) Penrose tiling, a space is 
filled with two kinds of rhombohedra, a prolate rhom- 
bohedron (PR) and an oblate one (OR), spanned by 
a triad of vertex vectors of an icosahedron. Therefore 
there is a long-range correlation of the icosahedral 
orientational order in 3D Penrose tiling. When 3D 
Penrose tiling is generated by means of a projection 
of a six-dimensional (6D) hypercubic lattice onto a 
3D real space, a long-range correlation of the icosahe- 
dral orientational order is incorporated by requiring 
that six lattice vectors of the 6D hypercubic lattice 
are projected to give six vertex vectors of an icosahe- 
dron in a 3D real space. In this sense, the icosahedral 
orientational order propagates in a coherent way 
through a long-range positional correlation in a 
higher-dimensional space. In this section, we try to 
construct an aperiodic covalent system by decorating 
Penrose rhombohedral tiles with tetrahedrally bon- 
ded atoms. This provides us with an alternative model 
of the propagating LPO with tetrahedral bonding. 

Our approach is similar to Elser & Henley's (1985; 
Henley & Elser, 1986) method for deriving realistic 
structures of quasicrystalline alloys. Elser & Henley 
(1985) proposed a projection scheme generating a 
rational approximation of 3D Penrose tiling, that is, 
a large unit-cell structure with Penrose rhombohedral 
tiles (Appendix C). They pointed out that the crystal 
structures of some alloys which have a similar 
chemical composition to that of quasicrystalline 
phases can be interpreted as a periodic Penrose lattice 
with an appropriate decoration and proposed poss- 
ible quasicrystalline structures based on the decor- 
ation found in crystalline alloys. Although Penrose 
rhombohedral tiles are not necessarily fundamental 
structural units which reflect the chemical character 
of compositional elements, Elser & Henley's method 
is one reasonable way to analyze realistic structures 
of quasicrystallites. 

Diamond (zincblende) and wurtzite structures are 
interpreted as packing of decorated rhombohedral 
tiles. By Dirichlet construction for f.c.c, and h.c.p. 
structures, a space is divided into an assembly of 
tetrahedra and octahedra in a 2:1 ratio. Since an 
octahedron capped with two tetrahedra makes a pro- 
late rhombohedron, only slightly distorted with 
respect to a Penrose PR, we can regard f.c.c, and 
h.c.p, structures as packing of PR's. Here, the 
difference between f.c.c, and h.c.p, structures is that 
of stacking of rhombohedra. The diamond and wurt- 
zite structures, which are derived from f.c.c, and h.c.p. 
lattices, respectively, are obtained by decorating the 
PR with a tetrahedrally bonded atom, as shown in 
Fig. 9. 

It is known that tetrahedrally bonded Si has another 
cubic structure than diamond and wurtzite types 
under high pressure (Kasper & Richards, 1964). In 
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this high-pressure phase, which is usually referred to 
as BC-8 or Si III, a tetrahedrally bonded network is 
divided into two sublattices, one of which is obtained 
by translation of the other, as in the diamond and 
wurtzite structures. The sublattice structure in this 
case can be regarded as a packing of two kinds of 
rhombohedra,  PR and OR, with a bulk ratio 1:1 
where atoms occupy vertices of both rhombohedra.  
Remarkably, this packing of rhombohedra is 
topologically the same as one of the rational approxi- 
mations of a 3D Penrose lattice, which is called 1/0 
periodic structure (Elser & Henley, 1985). If we 
regard the BC-8 structure as a packing of decorated 
Penrose tiles, the PR and OR should be decorated as 
shown in Fig. 10. 

Internal solid angles associated with each vertex 
of Penrose rhombohedral tiles are rr/5, 37r/5, 7rr/5, 
and rr/5 for a vertex on a threefold axis of a PR 
(denoted as P,), a vertex not on a threefold axis of 
a PR (P3), a vertex on a threefold axis of an OR (07) 
and a vertex not on a threefold axis of an OR (Oi), 
respectively. Then a vertex in a Penrose lattice is 
classified in terms of the numbers of PI, P3, 07 and 
Oi tips meeting at the vertex (Henley, 1986). In a 1/0 
periodic Penrose lattice, all eight vertices in a cubic 
unit cell are labeled as (Pl, P3, OI, 07)  = (1,  3, 1, 3) 
where Pl is the number of PI tips meeting at the vertex 
and so on. According to the decoration scheme in 
Fig. 10, all of PI and P3 are decorated in such a way 
as to be connected by one bond while all of Oi and 
07 are not decorated with any bond. Then eight 
vertices in a unit cell of 1/0 periodic structure are 
decorated with four bonds. 

In a 1/1 periodic Penrose lattice, there are 32 
vertices in a cubic unit cell, which are labeled as in 
Table 1. If we adopt the decoration scheme in Fig. 
10 straightforwardly, a vertex labeled as (0, 2, 0, 2) is 
decorated by only two bonds, which is inconsistent 
with tetrahedral bonding. However, Elser & Henley 
(1985) proposed to eliminate vertices labeled as 

Fig. 9. Decoration of PR in diamond and wurtzite structures. 

Table 1. Vertices in 1/1 periodic Penrose lattice 

Label Number of vertices 

(0, 2, O, 2)0* 6 
(o,4,1, l )*  6 
(1,3,3,1)* 6 
(0,6,2,0) 6 
(I,5,4,0) 6 

(14,0,6,0) 2 

* The subscript is the number of second neighbors along a chain of 
threefold body diagonals of OR. 

(0,2, 0, 2) by modifying a shadow space (Henley, 
1986) and to take, as an additional structural unit, a 
rhombic dodecahedron (RD), which is made out of 
two PR's and two OR's. The internal solid angle of 
each vertex of RD is 2rr/5, 3~-/5, 4zr/5 and 7zr/5 as 
shown in Fig. 11. By eliminating vertices (0, 2, 0, 2) 
from the 1/1 structure, we have 26 vertices in a unit 
cell, which are classified as two vertices labeled as 
( P l ,  P3, Oi, 07, r2, r3, r4, r7) ----- (8,  0, 0, 0, 6, 0, 0, 0) and 
24 vertices as (0, 2, 0, 0, 0, 1, 1, 1). In order to make 
all 26 vertices connected by four bonds, we require 
the following rules: (1) For a PR, half the Pl and /)3 
tips should be decorated with one bond. (2) For a 
R D ,  R3, R 4 and R 7 tips should be decorated with one 
bond whereas R2 tips should not be decorated. We 
find that decoration satisfying the above rules is given 
as shown in Fig. 12. 

If the symmetry of a decorated tile is the same as 
that of the original one, the decoration of a whole 
system can be done quite automatically. If the sym- 
metry of a tile is lowered by decoration (asymmetric 
decoration), however, a way of lowering symmetry 
should be determined for each tile by checking the 

(~ Rn 

• (0.2,0,2) 

Fig. 11. Configuration around (0, 2, 0, 2) vertex and a RD tile. 

Fig. 10. Decoration of PR and OR in BC-8 structure. 

S 
Fig. 12. Proposed decoration of PR and RD for 1/1 periodic 

Penrose lattice. 
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local environment. To be more precise, let us examine 
decoration of a PR and a RD in Fig. 12. There a PR 
loses an inversion symmetry in a decorated version 
whereas a mirror symmetry for a plane involving a 
twofold axis is not conserved in a decorated RD. Let 
us color rhombic faces which are decorated so that 
three vertices are connected with a single tetrahedral 
atom inside (Fig. 13). Then an additional restriction 
of decoration can be stated as follows: a colored face 
of one tile should be pasted on an uncolored face of 
the other. If a colored face is pasted on a colored 
one, we have a four-membered ring, which costs much 
structural energy. Actually, a 1/1 periodic Penrose 
structure can be decorated to satisfy the coloring-and- 
matching rule. In the resulting structure, all the ver- 
tices are connected by distorted tetrahedral bonds 
and there is no broken bond. By moving atoms 
appropriately without changing topology, we find that 
this structure is equivalent to the diamond structure. 

Local atomic arrangements generated by the rolling 
polytope model minimize approximately the struc- 
tural energy described by two- and three-body inter- 
actions because a template has correct tetrahedral 
coordination. Local atomic arrangements in a decor- 
ated periodic Penrose structure, on the other hand, 
cost a great deal of three-body interaction energy, 
which is associated with a bond-angle variation. To 
see this, let us parametrize the structural energy in 
terms of two- and three-body interatomic potentials as 

Est = ~ [e~(i) + eb(i)], (4.1) 
i 

where es(i) and eb(i) are the bond-stretching and 
bond-bending energies associated with the ith atom. 
Within the Keating (1966) model these energies are 
given by 

eb(i) ~kb~-'. + , 
j > l  

where Ri is the positional vector of the ith atom and 
summation is taken over tetrahedrally coordinated 
sites of the ith atom. Force constants ks and kb are 
taken as 12.4 and 7.08 eV, respectively, forSi and an 
equilibrium bond length a is taken to be x/6/4, which 
is the center-to-vertex distance of a tetrahedron with 
a unit edge length. In Table 2 the stretching and 

Fig.  13. C o l o r i n g  o f  PR a n d  R D  d e c o r a t e d  as  in Fig.  12. 

Table 2. Structural energies o f  a decorated periodic 
Penrose lattice 

Lat t i ce  

I /0  

1/1 

U n r e l a x e d  R e l a x e d  
Ver tex* e, (eV) eh (eV) e, (eV) eh (eV) 

A 0.08 i .85 0.05 0-50 
B 0.08 0-11 0.05 0.50 

A(8, 0, 0, 0, 6, 0, 0, 0) 0'08 0.01 0"05 0"01 
A(0, 2 ,0 ,0 ,0 ,  I, I, I) 0.08 1-55 0.05 0"01 

A in RD 0'08 4-50 0"05 0.01 
B in PR 0"08 0' I ! 0"05 0"01 
B in RD 0"08 2"60 0-05 0"01 

* Vertices of Penrose tiles are designated as A while those added by 
decoration (black atoms in Figs. 7, 10 and 12) are designated as B. 

bond-bending energies for inequivalent atoms in a 
unit cell in decorated 1/0 and 1/1 structures are 
shown. It is remarkable that there is atomic-scale 
inhomogeneity. We can relax a decorated structure 
to minimize the structural energy. Here it is assumed 
that the topology of the lattice is not changed, that 
is, rearrangements of bonds are not allowed in a 
relaxation process. After relaxation, the atomic-scale 
inhomogeneity is removed completely. The resulting 
systems are exactly BC-8 and diamond lattices for 
1/0 and 1/1 periodic Penrose structures, respectively! 

We have obtained decoration of the structm:al units 
of Penrose tiling. Here it should be determined 
depending on the local environment, probably by 
using the coloring-and-matching rule explained 
above, whether a PR should be decorated with one 
tetrahedral atom or with two atoms. Actually, when 
we try to decorate higher-order periodic Penrose lat- 
tices, the coloring-and-matching rule in the case of 
asymmetric decoration makes it very difficult to find 
reasonable decorated structures. However, we can 
show that atoms with broken bonds are necessarily 
introduced in a decorated Penrose lattice. For 
example, a unit cell of 2/1 periodic structure consists 
of 84 PR's and 52 OR's in the original tiling and 49 
PR's, 16OR's and 18 RD's after eliminating 
(0,2,0,2) vertices. Labels of vertices in both 
cases are shown in Table 3. Apparently decoration 
of vertices labeled as (0, 2, 0, 1,0, 0, 0, 1), 
(0 ,0 ,1 ,0 ,0 ,5 ,1 ,0 ) ,  and (1 ,0 ,1 ,0 ,0 ,2 ,3 ,0 )  are 
inconsistent with tetrahedral bonding because they 
are connected by three, six and five (at least) bonds, 
respectively, according to the decoration scheme 
derived above. This means that atoms with broken 
bonds are necessarily introduced in higher-order peri- 
odic Penrose lattices with tetrahedral decoration. 

Recently Olami & Alexander (1987) have proposed 
a tetrahedrally coordinated quasicrystalline structure, 
which is obtained by projection of a 6D hypercubic 
lattice with non-symmorphic tetrahedral decoration 
onto a 3D real space. Since all the tetrahedrally coor- 
dinating sites in a 6D space are not always accepted 
to be projected onto a 3 D space, the resulting structure 
inevitably involves many dangling bonds. Although 
the relationship between the present decoration of 
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Table 3. Vertices in 2/1 periodic Penrose lattice 

(Pl, P3, °!, 0 7 )  (Pl, P3, °1, 07, r2, r3, ra, r7) Number  of  
vertices 

(0, 2, 0, 2)0 Eliminated 6 
(0, 2, 0, 2)t Eliminated 12 
(0,2,0,2)2 (0,2,0,0,0,0,0,2) 6 
(0,4, 1, 1)o (0,2,0, 1, 0,0, 0, I) 6 

(0,3, 1, 1,0, 1, 0, 0) 6 
(0,3,0,1,0,0,1,0) 18 

(0,4, 1, 1) t (0,2,0,0,0,0,0,2) 15 
(0,3, 1, 0, 0, 1,0, 1) 6 

(I,3,3, 1)o (1, 0, 0, 1,0,0,3,0) 2 
(1,0,0,0,0,0,3,1) 3 

(0,6,2,0) (0,2,0,0,0,0,0,2) 6 
(0,4, 1,0,0, I, t,o) 3 
(0,5, 1, 0,'0, o, 1,0) 12 

(1,5,4,0) (1, 1, 1,o,o,o,2, I) 3 
(2,4,6,0) (0,0, 1,0,0,5, 1,0) 3 

(0,2,1,0,0,3,1,0) 3 
(0,4,2,0,0,2,0,0) 6 
(1,0, 1,0,0,2,3,0) 3 
(1,3,3,0,0, 1, 1,0) 3 

(5,3,6,0) (4,3,4,0,0, 1, O, O) 3 
(5,3,6,0,0,0,0,0) 1 

(8,2,6,0) (5,0,2,0,2,3,0,0) 3 
(4,2,4,0,3,0,0,0) 3 

(12,0,8,0) (6,0,0,0,7,0,0,0) 3 
( 2 0 , 0 , 0 , 0 )  (20,0,0,0,0,0,0,0) l 

Penrose tiles and the projected pattern of  a decorated 
6D hypercubic  lattice is not clear, it is interesting that 
difficulty in obtaining a continuously connected 
network is a common feature. 

5. Concluding remarks 

In the cont inuous random network (CRN)  model 
(Polk, 1971; Connell  & Temkin,  1974) for amorphous  
semiconductors ,  aperiodici ty is essentially achieved 
through the variation in the relative rotation angle of 
tetrahedral  coordinat ions of  adjacent  atoms, 0. There 
a network is built by adding tetrahedral  atoms one 
by one without leaving any dangling bond. Even- 
tually, in the CRN  model,  the distribution of  0 (101 <- 
60 °) comes out as a symmetric  distribution peaked 
at 0 = + 6 0  ° (Connell  & Temkin,  1974; Polk & 
Boudreaux,  1973; Steinhardt,  Alben & Wearie, 1974). 
In d iamond,  wurtzite and BC-8 structures, a network 
is a mixture of  staggered (0 = +60 °) and eclipsed 
(0 = 0 °) configurations with a bulk ratio 1 : 0, 3 : 1 and 
1:3, respectively. In § 2 we investigated a system 
consisting of  only eclipsed configuration. All these 
structures are cont inuously  connected or, in other 
words, there are no broken bonds. In §§ 3 and 4 we 
examined systems involving icosahedral orientat ional  
order as well as tetrahedrai  bonding. In both cases 
broken bonds  are necessarily introduced,  a l though 
there still remains the possibili ty that broken bonds  
are saturated by bond rearrangement.  In the polytope 
240 model discussed in § 3, a template with definite 
chirality in a local atomic arrangement ,  which is 
associated with the sign of  0, is used to describe LPO. 
A defect associated with chirality is obviously a wall, 
on which tetrahedral  bonds  are generally broken. 

Although chirality is not clear in a decorated Penrose 
lattice, it is interesting that  a periodic Penrose lattice 
decorated successfully with no broken bond is relaxed 
to a structure with a symmetr ic  mixture of  chirality. 
It would therefore be interesting to investigate a sys- 
tem without symmetry breaking in chirality. 
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A P P E N D I X  A 

Quaternion representation of  a 4D sphere 

In this Appendix  we summarize the descript ion of 
the geometry of an S 3 manifold in terms of quaternion 
representat ions (Nelson & Widom, 1984). 

The coordinates of a point  of S 3 are parametr ized 
by a geodesic distance q /and  coordinates on a three- 
dimensional  unit sphere (x, y, z) as 

(x0, xl ,  x2, x3) = (cos 0, x sin ql, y sin ~b, z sin ~),  

(A.1) 

where 0 -  < ~b _< ~r. Here S 3 has a contact with a flat 
real space R 3 at its north pole (1, 0, 0, 0). Usually it 
is more convenient  to express the coordinates in terms 
of a quaternion as 

~ = 1  cos ~b+ i sin ~(~ '~  +~'ry+~'zz) 

= e x p  [ i~(¢~xx + ~'yy+ J'zZ)], (A.2) 

where 

t~,,] = ]k~ =~ , , ,  (A.3) 

aoa, =i, 
• A 

= te,~,o'v, a # fl (A.4) 

with an ant isymmetr ic  tensor e,~t3 ~. Since a rigid rota- 
tion in four dimensions is generated by six generators,  
a four-dimensional  rotation is given in terms of  left 
(l) and right (r) screw transformations as 

(I, r): a = l~r -I, 

= exp [ i(q,,/2) (&nt)]~ exp [--i(~tr/2) (~n~)], 

(A.5) 
where 

A 

~nl = tr,,nl + t~rnz ' + t~nzz. (A.6) 

The generators of rotation in a flat space, Lxy, Lyz and 
Lzx, are expressed as 

(l, l ) :a  = exp [i(qh/2)(t~n,)]t~ exp [ - i (q / f fZ)(~nt ) ] ,  

(A.7) 
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whereas the generators of rotation analogous to a 
flat-space translation, Lox, Loy and Loz, are 

(/, 1-'): t~ = exp [i(4,ff2) (t~n,)]t~ exp [i(~,,/2)(t~nl)]. 

(A.8) 

Here ~bt is a rotational angle. Apparent ly  rolling of 
S 3 along a straight line in R 3 induces a rotation of 
S 3 generated by (l, 1-1): (see Fig. 14). 

A set of  vertices of polytope {3, 3, 5} is isomorphic  
to Y' where a vertex (1, 0, 0, 0) corresponds to a unit 
element of  Y' (see Appendix  B). Let us consider  a 
rolling along a straight line in R 3 which is a trace of 
a geodesic line between two vertices of polytope 
{3, 3, 5}, say (1, 0, 0, 0) and exp [i@o(t~no)]. Then a 
vertex of the polytope,  t~, is t ransformed by rolling as 

~'=(l, l - I ) "  ~, ( A . 9 )  

where 

1= exp [i( ~bo/2)(O'no)]. (A.10) 

Since l is not generally an element of Y', tT is not 
an element of  Y'. In other words, the t ransformat ion 
associated with rolling is not a symmetry operat ion 
of the polytope.  To clarify this meaning, let us rewrite 
(A.9) as 

tT = (1, l ) : [ i ,  (12)-']:ft. (A.11) 

Here, since 12 is an element of Y', a set of t ransformed 
vertices {t~l 2} agrees with a set of original vertices {t~} 
(because of the so-called rearrangement  theorem).  
Because the t ransformation (l, l): gives a rotation of 
an icosahedral  arrangement  around t~l 2 = (1, 0, 0, 0), 
the rolling of  polytope induces a rotation of  a local 
atomic arrangement  in a flat space R 3, which is not 
necessarily a symmetry operat ion of an icosahedron.  
Therefore the rolling polytope model automatical ly  
incorporates defects of  orientational order,  i.e. dis- 
clinations. 

+ 

l 

i 

( x , t ) ( ~  
i i 

R 3 

5 3 

Fig. 14. Schematic illustration of rolling S 3. 

Table 4. Class multiplication table for the group T' 

% 8 % + 4 %  8~o+4~2  
+ 3 ~ 3 +  ~3 + q~3 + 3q~3 

~3 8 ~o + 4 c¢ 2 
+3%+ ~3 

% 

c~ 2 
% 

3~3+ 3q~ 3 

3 ~ 3 + 3 ~  3 

6 % + 6 ~ o + 4 %  

APPENDIX B 

Elements and classes of the groups Y' and T' 

According to homotopy  theory (Mermin,  1979), the 
class structure of the non-Abelian homotopy  group 
determines how defects combine. The 120 elements 
of Y' are classified into nine classes as 

C¢o= {1}, 

c¢5={exp[ i ( ,n /5 ) (~e~) ) ] , j=  1,. ,12}, 

~3 = {exp [ i( zr/ 3 )( d'e ~/)) ] , j  = 1,. ,20}, 

c¢~ = {exp [ i ( 2 r r / 5 ) (~e~  ))] , j  = 1, . ,  12}, 

~¢2={exp[i(Tr/2)(d 'e~i))] , j=l , .  ,30}, (B.1) 

Us = {exp [ i (37r /5)(c ;e~)) ] , j  = 1, . ,  12}, 

~3 = {exp [ i (2r r /3) (~e~i ) ) ] , j  = 1, . ,  20}, 

qg5 = {exp [i(4~' /5)(7tre~))] , j  = 1, . . ,  12}, 

~o={--1},  

where ,:v^(i), e~ i) and ':e^(i) denote unit vectors in the 
direction of fivefold, threefold and twofold symmetry  
axes of an icosahedron,  respectively. The class multi- 
plication table for Y' is given by Nelson (1983a).  
The 24 elements of T', which is a subgroup of  Y', 
are classified into five classes as 

~o={1},  

(~v 3 : {exp [i( rr/3)(d'e~ i)) ] , j  = 1 , . . . ,  8}, 

~ 2 = { e x p [ i ( T r / 2 ) ( S e ( ¢ ) ) ] , j = l , . . . , 6 } ,  (B.2) 

~3 = {exp [i(27r/3)(Se~i))],j  = 1 , . . . ,  8}, 

~o=  {-1}, 

where e(3 j) and e(2 i) are unit vectors in the direction of 
threefold and twofold symmetry axes of an tetrahe- 
dron, which are elements of  subsets of{e~ i)} and {e(j)}, 
respectively. The class multiplication table for T' is 
given in Table 4. 

APPENDIX C 

Projection method generating Penrose lattice 

A three-dimensional  Penrose lattice is obtained by 
means of a projection of  six-dimensional (6D) hyper- 
cubic lattice points onto a 3D real space. In this 
Appendix we will summarize the construction of  a 
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3D Penrose lattice and its rational approximation by 
a projection method. 

A complete set of six orthonormal vectors in 6D 
space is defined by 

IPll')) -- [2(22 + 1)]-'/2(z' 7' 1' 0' 0' 1)' ] 

Ipl l2))--[2(zZ+l)]- ' /2(1,-1,0,  r,z, 0), ~ (C.1) 

Ipll 3)) = [2(r  2 + 1)]-'/2(0, 0, r, 1, -1 ,  - r ) , j  

I p(~)> -- [2(~2 + 1)]-1/2(1,1, -z ,  o, o, - r ) , ]  
! 

Ip~))=[2('r2+l)]-'/2(-r,r,O,l,l,O), ~ (C.2) 

Ip?)) = [2(~2+ 1)]-'/2(0, 0, 1 , - z ,  r, - 1 ) , J  

where r is the golden mean. The projection operator 
onto a 3D physical space is given by 

3 

/;, 7- .cj)\/.(~) = t" / \e  , (C.3) 
j=l  

and that onto a 3D perpendicular space is given by 
3 

/~l = Y~ ]P~))(P~>I- (C.4) 
j = l  

Here a set of three vectors in a 3D physical space, 
{IpllJ))}, is chosen so that a projection of six lattice 
vectors of a 6D hypercubic lattice gives six vertex 
vectors of an icosahedron. A 6D hypercubic lattice 
point is accepted to be projected onto a 3D physical 
space if its image in a 3D perpendicular space is in 
a compact shadow space b °. Then the lattice points 
of a 3D Penrose lattice are obtained as 

R = (<pll')l n), <pll2)l n), (pll3)ln)), (C.5) 

where a 6D hypercubic lattice point In)= 
(nl,  n2, n3, n4, ns, n6) (ni's are integers) is accepted if 
the condition 

fi±ln)~ Y (C.6) 

is satisfied. The shadow space 5¢ is typically chosen 
as an image of  a 6D hypercubic unit cell. 

When we replace "r in (C.2) by its rational approxi- 
mation Fk+,/Fk where Fk is a Fibonacci number 
defined by Fk+, = Fk+ Fk-i with Fo=O and F1 = 1, 
we get a large cubic unit-cell structure (Elser & Hen- 
ley, 1985) because there exists a non-trivial set of  
integers, [z,)= (z,,, u2, ~'3, ~',,, us, z,6), which satisfies 

/~ppr°x)l  v) - (0, 0, 0, 0, 0, 0 ) . (C .7 )  

Elser & Henley (1985) referred to this system as an 
Fk+,/Fk structure. Here four F3k+: prolate and four 
F3k+~ oblate rhombohedra are in a cubic unit cell 
whose size is given by [ 2 ( 7 " F k + l + F k ) / ( r 2 + l ) l / 2 ]  3 

where the edge length of Penrose rhombohedral tiles 
is taken to be unity. 
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